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Econometrica, Vol. 55, No. 3 (May, 1987), 587-613 

THE ROLE OF CONDITIONING INFORMATION IN 
DEDUCING TESTABLE RESTRICTIONS IMPLIED BY 

DYNAMIC ASSET PRICING MODELS1 

BY LARS PETER HANSEN AND ScoTr F. RICHARD 

The purpose of this paper is to investigate testable implications of equilibrium asset 
pricing models. We derive a general representation for asset prices that displays the role 
of conditioning information. This representation is then used to examine restrictions implied 
by asset pricing models on the unconditional moments of asset payoffs and prices. In 
particular, we analyze the effect of information omission on the mean-variance frontier of 
one-period returns on portfolios of securities. Also, we deduce an information extension 
of equilibrium pricing functions that is useful in deriving restrictions on the unconditional 
moments of payoffs and prices. 

KEYWORDS: Asset pricing, conditioning information, mean-variance analysis, Hilbert 
spaces. 

INTRODUCTION 

IN A COMPETITIVE EQUILIBRIUM MODEL of asset markets, prices are found 
endogenously as a consequence of the aggregation of the decisions of economic 
agents. Equilibrium prices are determined by a pricing function that maps uncer- 
tain payoffs in the future into prices today. Alternative models of asset prices 
imply alternative pricing functions. Two models that imply the same pricing 
function are observationally indistinguishable using payoff and price data from 
asset markets. Hence we can index observationally equivalent classes of asset 
pricing models by their implied pricing functions. Data from sources other than 
asset markets are required to discriminate among models within an equivalence 
class. 

To understand the contribution of this paper, it is convenient to think of the 
analysis of asset pricing models as proceeding in two steps. The first step is to 
derive alternative pricing functions from more primitive assumptions on the 
underlying economic environment, e.g., preferences, endowments, and the techno- 
logical opportunities for production. The second step is to deduce the restrictions 
that these alternative pricing functions imply for the population moments of time 
series data on asset payoffs and prices. While both steps are important, our paper 
contributes to the second step of this analysis. 

Conditioning information is a crucial ingredient in our analysis of pricing 
functions. In most intertemporal models, information accumulates over time and 
traders in asset markets form portfolios contingent on information available at 
the time trades are made. The accumulated information becomes imbedded in 

1 Useful comments on this research were made by Gary Chamberlain, Darrell Duffie, Ravi 
Jagannathan, Narayana Kocherlakota, Steve Ross, Michael Rothschild, and Ken Singleton. We also 
received useful suggestions from seminar participants at Northwestern University, Yale University, 
New York University, and Columbia University. Hansen was partially supported by grants from the 
National Science Foundation and the Sloan Foundation. 
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asset prices that clear the competitive markets. (For example, see the equilibrium 
models of Brock (1980), Cox, Ingersoll, and Ross (1985), Lucas (1978), or Richard 
and Sundaresan (1981).) Consequently, a pricing function maps payoffs modeled 
as random variables into prices that are also modeled as random variables, but 
are constrained to be in the information set of traders at the time prices are 
quoted. From the vantage point of an outside observer or econometrician there 
is no useful sense in which payoffs are random and prices are not. Instead each 
of these classes of random variables are presumed to satisfy different informational 
constraints. A distinctive feature of our analysis is that the range of the pricing 
function is the collection of random variables in the information set of traders 
at the time the portfolio decisions are made. 

In this paper we consider implications of asset pricing functions for population 
moments of asset payoffs and prices. Although theoretical models assume traders 
make calculations conditioned on information available at the time of trading, 
it is often convenient for an econometrician to deduce empirical restrictions that 
do not depend on this conditioning information. For this reason, we consider 
the restrictions on population or unconditional moments implied by theoretical 
models of asset prices. Such moments are limits of time series averages of 
observable data for many data generation processes. 

In Section 1 we give a motivational example of a class of data generation 
processes for portfolio payoffs and prices which guarantee that time series 
averages converge (almost surely) to population moments. These data generation 
processes may be consistent with a variety of asset pricing models. On the other 
hand, there are other interesting data generation processes to which our analysis 
applies. 

The formal analysis in this paper proceeds as follows. In Section 2 we presume 
the existence of pricing functions that satisfy two important properties. The first 
property is value-additivity, i.e., the price of a portfolio is the portfolio of the 
prices. The second property is continuity, i.e., if a sequence of payoffs goes to 
zero, then the sequence of its prices goes to zero. Other authors have analyzed 
asset pricing functions that satisfy these two properties. See Rubinstein (1976), 
Ross (1977, 1978), Harrison and Kreps (1979), and Chamberlain and Rothschild 
(1983). The main contribution of this section is to show that alternative asset 
pricing functions that embody conditioning information can be represented using 
alternative random variables among the collection of payoffs from portfolios. 
This result follows from a conditional counterpart to the Riesz representation of 
a linear functional on a Hilbert space. We obtain this representation by extending 
conventional Hilbert space analysis to accommodate conditioning information. 
This extension is required for the analysis in Sections 3 and 4 and for other 
applications as well (Eichenbaum, Hansen, and Richard (1984)). 

In Section 3 we discuss the role of conditioning information in determining 
the mean-variance implications of asset pricing models. Chamberlain and Roths- 
child (1983) showed that the mean-variance frontier implied by a pricing function 
can be characterized in terms of two payoffs, one of which is the payoff used in 
representing the pricing function. The first step in our analysis shows that the 
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same result is true when conditioning information is introduced. We then take 
the analysis one step further and characterize the mean-variance frontier calcu- 
lated without using conditioning information. In particular, we display the relation 
between the conditional and unconditional mean-variance frontiers. This relation 
is important because standard approaches to testing mean-variance implications 
examine unconditional means, variances, and covariances of returns. 

All of the analysis in Section 3 uses pricing functions that map into the space 
of random variables in the conditioning information set of traders. The analysis 
in Section 4 proceeds along a somewhat different vein. Pricing functions are used 
to construct linear functionals defined on a standard Hilbert space of portfolio 
payoffs. These linear functionals map into the space of real numbers and are 
used to deduce testable restrictions in terms of unconditional moments. The 
empirical analyses conducted by Hansen and Singleton (1982) and Brown and 
Gibbons (1985) can be viewed as using this approach. 

Finally, Section 5 contains our conclusions and an Appendix is included that 
contains proofs of the lemmas and theorems presented in the text. 

1. DATA GENERATION 

In this. section we describe an important class of data generation processes to 
which our theoretical analysis applies. We include this description to help in 
relating our theoretical analysis to empirical analyses of asset market data that 
use summary statistics calculated by taking time series averages. The analysis in 
later sections applies to many data generation processes that are not in the class 
described here. Consequently, the discussion in this section is meant to be 
illustrative rather than exhaustive. 

Let (D2, F, Pr) define a probability space where f2 is a set of sample points, F 
is a sigma algebra of subsets of X, and Pr is a probability measure. It is convenient 
to introduce a deterministic law of motion governing the evolution of states of 
the world over time. Let S be a measurable, measure-preserving transformation 
mapping 12 into itself. This transformation defines the temporal evolution of 
states over time in the sense that if co is the state at time zero, then St(Z) is the 
state of the world at time t, where St is defined to mean the transformation S 
applied t times in succession. 

Even though the law of motion is deterministic, the true state will not be 
observed directly. For instance, suppose x is a measurable function (random 
vector) mapping 12 into k-dimensional Euclidean space that determines a vector 
of observations as a function of the underlying state. If w is the state of the world 
at time zero, then x[St(&o)] is the corresponding observation vector at time t. 
Hence, we define a vector stochastic process {x?: t = 1, 2,. . .} via 

(1.1) xt(a) = x[St(0 )], 

which determines a sequence of time series observations for each initial state of 
the world. In general, the observation vector x(w) will not reveal co. Thus even 
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though we have a deterministic law of motion governing the state of the world, 

x, will not in general be perfectly forecastable given x,_,, xt-2, . . ., xl. 
Since S is assumed to be measure-preserving, for any random vector x the 

stochastic process constructed via (1.1) is strictly stationary. Such stochastic 
processes satisfy a law of large numbers in the sense that {(1/ T) zT=I x,: T= 
1, 2,. . .} converges almost surely as long as x has a finite first moment. In general 
the limit random vector is E(x I F*) where F* is the sigma algebra of invariant 
sets of the transformation S (Brieman (1968, p. 113) or Doob (1953, p. 465)). 
When these invariant sets all have probability measure zero or one, we say that 
S is ergodic. In this case, E(x I F*) = E(x) so that time series averages converge 
almost surely to the average taken across states of the world using the measure 
Pr. For simplicity we assume that S is ergodic in our analysis (although much 
of our analysis also applies more generally with expectations conditioned on F* 
replacing unconditional expectations). 

In an environment such as this, an econometrician can learn about moments 
of random vectors by calculating time series averages. For the purpose of this 
paper, we will adopt the simplifying assumption that for any given state w, the 
entire infinite sequence of observations {x,(w): t = 1, 2, . .} is available to the 
econometrician. Thus we abstract from some important issues pertaining to 
statistical inference. 

As is standard in rational expectations models, we presume that economic 
agents in this environment make decisions at every date knowing the true probabil- 
ity distribution over states of the world. In general, their information will be 
limited so that the true state of the world is not revealed to them at any point in 
time. To define the common set of information available to all consumers at time 
t, let G denote a subsigma algebra of F. We interpret G as the information at 
time zero. Define 

(1.2) Gt = {At: At = S-t(A) for some A in G}, for t = 1, 2,.... 

Then G, is the sigma algebra defining the information available to economic 
agents at date t. We assume that GI contains G so that {Gt: t = 1, 2, .. .} is 
nondecreasing. Finally, for each t = 1, 2, .. ., let It denote the set of all random 
variables that are measurable with respect to G, and let I denote the set of all 
random variables that are measurable with respect to G. 

At any date t economic agents make portfolio decisions based on their current 
information. Asset prices are assumed to be measurable with respect to G, and 
hence observed by all consumers. A one-period security purchased at time t has 
a payoff at time t +1. The payoff for this security is assumed to be in the 
information set of economic agents at the date of payoff (t+ 1). Let p denote a 
random variable that is in I, and is used to define a sequence of such payoffs. 
The corresponding payoff at time t + 1 is given by 

(1.3) Pte+1() =p[St(W)]. 

Let I(p) denote the time zero price of the payoff p at time one so that IT(p) is 
a random variable in I. We assume that for any payoff sequence that is generated 
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via (1.3) for some p (which may be limited to an admissible set of payoffs), 

(1.4) ant(Pt+?)(w) = (p)[s (c))], 

where iTt(pt+?) is the time t price of Pt+i. 
In this paper we will study the pricing of one-period securities in the initial 

time period zero. As long as payoff sequences are generated via (1.3) and the 
prices of those payoffs evolve via (1.4), an initial period analysis will extend to 
subsequent time periods via the transformation S. Furthermore, any payoff 
sequence {pt+I: t = 1, 2, .. .} or price sequence {ITt(pt+?): t = 1, 2, .. .} will be a 
strictly stationary and ergodic stochastic process whose moments can be calculated 
by taking time series averages. Hence, it will be convenient to deduce implications 
of asset pricing models in terms of unconditional moments. Although our analysis 
focuses on one-period securities, it could be extended easily to accommodate 
multi-period securities. 

2. PRELIMINARY MATHEMATICAL ANALYSIS 

In this section we develop the mathematics that underlies our analysis in 
Sections 3 and 4. These same tools turn out to be useful in analyzing other 
problems as well. We will use notation that is compatible with that used in Section 
1. The transformation 5, however, will not play a role in the analysis in this section. 

Harrison and Kreps (1979) use Hilbert space methods to represent pricing 
functions and Chamberlain (1983) and Chamberlain and Rothschild (1983) 
deduce mean-variance implications for returns in a Hilbert space setting. We 
follow their lead except that we make one extension. For these other authors, 
the range of the pricing function at the date of initial trading, analogous to IT 

(introduced in Section 1) is the set of real numbers. As part of their analysis of 
continuous time diffusion models, Harrison and Kreps show that prices can be 
represented as conditional expectations after the initial trading date when new 
information has been revealed. We show this conditional expectations representa- 
tion applies to more general stochastic processes and we allow conditioning at 
the initial trading date. Hence the range of iT in our analysis is the set of random 
variables, I, that are measurable with respect to a subsigma algebra, G, of F. 

The purpose of this section of the paper is to show how to recast Hilbert spaces 
methods to take account of conditioning information. In particular, we will 
represent 7r as a conditional analogue to a linear functional mapping random 
variables (payoffs on portfolios of assets) that are measurable with respect to a 
subsigma algebra, GI, of F into prices that are measurable with respect to G. 
As in Section 1, we assume that GI contains G. 

First, we introduce some notation. In Loeve (1978) it is shown that for any 
random variable p, E(p2 1 G) is always well-defined almost surely although it 
may equal infinity with positive probability. Let 

(2.1) P+={p in II: E(p2j G)< o}, 
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where I, is the set of random variable that are measurable with respect to G1.2 
The set P' satisfies several nice properties that will be described subsequently. 
To describe these properties, it is convenient to introduce a conditional counter- 
part to an inner product on P+. For any Pi and P2 in P+, let 

(2.2) (PI I P2)G =E (P P2I G). 

A conditional version of the Cauchy-Schwarz Inequality guarantees that the 
right-hand side of (2.2) is well-defined and finite.3 In accordance with (2.2), we 
define a conditional norm to be 

(2.3) Ili P l G = [(PI P)G]1/21 

Both the conditional inner product (I )G and the conditional norm G map 
into L To define convergence using these constructs, we must use a notion of 
convergence of random variables that are measurable with respect to G. We use 
convergence in probability in the following definitions of conditional Cauchy 
sequences and conditional convergent sequences. 

DEFINITION 2.1: A sequence {pj: j = 1, 2,.. .} in P+ converges conditionally 
to po if for any c>0, limj1O Pr{1pj -poII G ?}=0. 

DEFINITION 2.2: A sequence {pj: j= 1, 2,.. .} in P+ is conditionally Cauchy 
if for any ?> O, limjk,oo Pr{| PjpjPkj|G> ?}=O= 

Next, we introduce a subset P of P+ that is restricted to satisfy conditional 
counterparts to linearity and completeness. 

DEFINITION 2.3: A set P is a conditional linear subspace of P+ if for any w, 
and w2 that are in I and any Pi and P2 in P, wlpl + w2p2 is in P. 

DEFINITION 2.4: A set P is conditionally complete if every conditional Cauchy 
sequence in P is conditionally convergent to some element in P. 

It is easily verified that the set P+ is conditionally linear. This follows from 
the conditional Minkowski Inequality and from the fact that 

(2.4) te WppdG = sw| t paPicGe 

In the Appendix we show that P+ is conditionally complete. 

2 Throughout this paper, equality and inequality relations between random variables are only 
required to hold with probability one. We will adopt the usual convention of viewing random variables 
in an equivalence class, that are equal with probability one and satisfy appropriate measurability 
restrictions, as being the same random variable. 

To see this, let p+ = max (0, p) and p- = max (0, -p). Then (PI P2)+ = p+p2 +P p-p and (PI P2) = 

p p 2+P aPu hw. Conditional versions ofthe Minkowski, Holder, and Cauchy-Schwarz Inequalities are 
valid (Loeve (1978, p. 14)). The conditional Cauchy-Schwarz Inequality implies that P+ Pi P2-, 

P2-, and pp2+, all have finite expectations conditioned on G. Hence (PI P2)+ and (PI P2)- have 
finite expectations conditioned on G. Following Loeve (1978), we define 

E(p1 P21 C) = E[(p PP2)+ G]-E[(p PP2)- G]. 
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In our analysis we view P as a set of payoffs at time one from portfolios 
purchased at time zero. One possibility is for P to equal P+ in which case P 
contains (among other things) all event contingent claims based on information 
in I,. We allow P to be a proper subspace of P+ to accommodate situations in 
which either the econometrician omits assets from his analysis or the markets 
open to economic agents are incomplete. (Markets can be incomplete, even if 
the set of payoffs P is conditionally complete in the mathematical sense of 
Definition 2.4.) 

ASSUMPTION 2.1: P is a conditionally complete linear subspace of P+. 

The restriction that P be a conditional linear space from the standpoint of 
economic agents can be motivated by the fact that economic agents are allowed 
to adjust their portfolios based on information that is available at the purchase 
date of the portfolios. 

Next, we introduce a pricing function 7T that maps the set of payoffs P into 
I. We impose two assumptions on the pricing function IT and the set of payoffs 
P. The first assumption is termed value-additivity and requires that the price of 
a conditional linear combination of payoffs be equal to the corresponding linear 
combination of prices for the individual payoffs. 

AssuMPTION 2.2: For any Pi and P2 in P and any w1 and W2 in I, 7T(wlpl + 

W2p2) = W1ir(P1) + w2 9r(P2) 

The second assumption requires that the pricing function be conditionally 
continuous at the zero payoff. 

AssuMPTION 2.3: If {pj:j = 1,2,.. .} is a sequence of payoffs in P that converges 
conditionally to zero, then for any ? > 0, limj,O> Pr {1IT(pj)l> E = 0. 

Assumption 2.3 specifies the sense in which small payoffs have small prices. 
Equivalently, it stipulates the sense in which value-additivity holds for an infinite 
series of payoffs: If {I=1 Pk: = 1, 2, -} converges conditionally to po, then 
{k= I(Pk): j= 1, 2,.. .} converges in probability to g(p0). Assumptions 2.2 and 
2.3 require that X be the conditional analogue to a continuous linear functional 
on a Hilbert space. 

Next we consider a different motivation for Assumption 2.3. When there is 
free disposal of the good used to denominate the payoffs, prices of payoffs that 
are nonnegative with probability one will have equilibrium prices that are non- 
negative. In this case Assumption 2.3 can be omitted as long as XT is defined on 
P+. 

LEMMA 2.1: Suppose P = P+, Assumption 2.2 is satisfied, and for any p ? 0 in 
P+, IT(p) ? 0. Then Assumption 2.3 is satisfied. 
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In light of Lemma 2.1, the continuity requirement is implied whenever 7T can 
be extended from P to P' in such a way as to preserve nonnegativity and assign 
finite prices to all payoffs in that extension.4 The assignment of finite prices to 
all elements in P+ appears to be an important restriction, the plausibility of which 
will depend on the particular asset pricing model under investigation. 

For our analysis, it is convenient to rule out certain nontrivial pricing functions. 

ASSUMPTION 2.4: There exists a payoff po in Pfor which Pr {fg(po) = O} = 0. 

A sufficient condition for Assumption 2.4 to be valid is that the pricing function 
7T be strictly positive on P+: 

LEMMA 2.2: Suppose P = P+, Assumption 2.2 is satisfied, and Pr {7r(p) > O} = I 
for any p in P+ for which Pr {p > O} = 1. Then Assumptions 2.3 and 2.4 are satisfied. 

An example of a pricing function that satisfies Assumptions 2.2 and 2.3 is 
7T(p) = (pI p*)G for some p* in P. It turns out that all pricing functions have 
such a representation. This result is an implication of the conditional analogue 
to the Riesz Representation Theorem from the theory of Hilbert spaces. 

THEOREM 2.1: Suppose Assumptions 2.1-2.4 are satisfied. Then there exists a 
unique payoff p* in P that satisfies gT(p) = (p I p*)G for all p in P. Furthermore, 
Pr{IIp*IIG>O}f =1 

Theorem 2.1 shows that each asset pricing function is uniquely indexed by a 
benchmark payoff, p*, in P. 

There is a particularly convenient interpretation of p* when 7r has no arbitrage 
opportunities on P+. 

DEFINITION 2.4: A pricing function 7T has no arbitrage opportunities on P if 
for any payoff p in P for which Pr {p : O} = 1, Pr ({I7(p) - O} n {p > O}) = 0. 

An interpretation of no-arbitrage is that nonnegative payoffs that are positive 
with positive probability conditioned on G have positive prices.6 This restriction 
on 7r is the conditional counterpart to the no-arbitrage assumption used by 
Ross (1978). 

4 Kreps (1981) gives necessary and sufficient conditions for such an extension when the pricing 
function is a (unconditional) linear functional. 

5Theorem 2.1 would also be true if the notion of convergence in Assumptions 2.1 and 2.3 was 
convergence almost surely instead of convergence in probability. We use convergence in probability 
because it simplifies our proofs. Furthermore, a version of Theorem 2.1 remains valid under a 
weakened version of Assumption 2.4. See Hansen and Richard (1985). 

6 To see that no-arbitrage can be defined equivalently using conditional probabilities, let lI denote 
that random variable that is one when p is positive and zero otherwise. Then 

Pr({1(p) O}rn{p>O}) = I lp dPr= { E(Ip c) dPr, 

as long as Pr ({ T(p) < 0}) > 0. Therefore, Pr ({IT(p) - O} rn { p > 0}) = 0 if, and only if, Pr ({IT(p) - 0} rn 
{E(1P I G) > O}) = O. 



CONDITIONING INFORMATION 595 

LEMMA 2.3: Suppose P = P+ and Assumption 2.2 is satisfied. Then IT has no 
arbitrage opportunities on P+ if, and only if, Pr {p* > O} = 1. 

In light of Lemma 2.3, when 7T has no arbitrage opportunities on P+, p* will 
be strictly positive with probability one. In this case we can interpret p* as a 
measure of the equilibrium intertemporal marginal rate of substitution of the 
numeraire good used to denominate prices for the numeraire good used to 
denominate payoffs. Harrison and Kreps (1979) use p* to define a new probability 
measure such that asset prices can be calculated as conditional expectations. In 
our analysis we will continue to use the original probability measure. 

In the next section we use the results in this section to study the impact of 
omitting conditioning information when studying asset pricing models using time 
series data. 

3. IMPLICATIONS FOR OMITTING INFORMATION 

Chamberlain and Rothschild (1983) and Chamberlain (1983) use Hilbert space 
theory to characterize restrictions of asset pricing models in terms of means and 
variances of returns. In light of the mathematical results given in Section 2, it is 
not surprising that much of their analysis will carry over to a conditional Hilbert 
space setting. We show that this is indeed true. Then we proceed to study the 
impact of omitting conditioning information in calculating mean-variance 
frontiers for infinite dimensional spaces. In particular we compare the mean- 
variance frontier conditioned on G to the unconditional mean-variance frontier. 

Consider a set of payoffs P and a pricing function 7T that satisfies Assumptions 
2.1-2.4. We define two level sets of IT that are central to our analysis: 

(3.1) R = {p in P: 7T(p) = 1} 

and 

(3.2) Z = {p in P: T(p) = 0}. 

The set R is the collection of all payoffs with unit prices, i.e., the set of all returns. 
The set Z consists of all payoffs with zero prices. Since P is a conditional linear 
subspace and IT is a conditional linear functional, the zero payoff is in Z. 
Assumption 2.4 guarantees that the payoff po! lT(p0) is in R. Hence, both Z and 
R are not empty. 

In Section 2 we showed that gI could be represented as 

(3.3) IT(p) = (p p p*)G for all p in P. 

Furthermore, we showed when the pricing function is nontrivial (i.e., when 
Assumption 2.4 is satisfied), Pr { 7T(p*) = O} = 0 so that 

(3.4) r* = p*/ 1T(p*) 

is a well-defined return in R. 
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LEMMA 3.1: Suppose that (P, iT) satisfies Assumptions 2.1-2.4. Then 

(i) (r* I z) =O, for all z in Z; 

(ii) (r*Ir*)Go< (rlr)G forallrinR. 

Lemma 3.1 shows that r* is the minimum conditional second moment return. 
This implication carries over when unconditional second moments are used in 
place of conditional second moments. By the Law of Iterated Expectations, 

(3.5) E(p2) =E[(plp)G] foranypinP 

where the expectation in (3.5) may be infinite. Implication (ii) of Lemma 3.1 and 
relation (3.5) together imply that 

(3.6) E(r *2) < E(r 2) for any r in R. 

Either side of (3.6) may be infinite. When the left-hand side of (3.6) is infinite, 
then (3.6) is interpreted to imply that the right-hand side of (3.6) also is infinite. 

The difference between two returns in R is always in Z. Hence singling out 
any return in R as a benchmark, all other returns can be expressed as the sum 
of that benchmark return and an element in Z When r* is used as the benchmark, 
we obtain 

(3.7) R = {r: r= r*+ z for some z in Z}. 

This is a particularly convenient representation of R since r* is conditionally 
orthogonal to Z [implication (i) of Lemma 3.1]. 

The set Z is itself a conditionally complete linear subspace of P+. Furthermore, 
the conditional expectation operator E( - I G) defines a conditional analogue to 
a continuous linear functional on Z. Hence, we have the result: 

LEMMA 3.2: If (P, 7T) satisfies Assumptions 2.1-2.3, then [Z, E( - I G)] satisfies 
Assumptions 2.1-2.3. 

We impose the following additional restriction: 

AssUMPTION 3.1: There exists a payoff zo in Zfor which Pr {E(zo j G) = O} = 0. 

An equivalent statement of this assumption is that [Z,E( IG)] satisfies 
Assumption 2.4. Assumption 3.1 requires that the conditional expectation operator 
and the pricing function disagree somewhere on Z (with probability one). This 
means that prices are inconsistent with risk neutrality. Assumption 3.1 is satisfied, 
for instance, when the variance of p* conditioned on G is different from zero 
with probability one and P is P+. 

With the addition of Assumption 3.1, Theorem 2.1 implies that there exists a 
unique payoff z* in Z for which 

(3.8) (z z*)G = E(z I G) for all z in Z. 
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Theorem 2.1 also shows that (z*j z*)G = E(z*2l G) = E(z*I G) is positive with 
probability one. Notice that 

(3.9) Var (z* I G) = E(Z*2 I G) - E(z* I G)2 =.E(z* I G)(1 - E(z* I G)) 0 O 

implies that with probability one 

(3.10) E(z* I G) = (z* I z*)G - 1. 

The random variable z* defines one (conditional) dimension of Z All remaining 
dimensions that are orthogonal to z* conditioned on G must have conditional 
mean zero since (3.8) is satisfied. Hence, the set Z can be represented as 

(3.11) Z = {z: z= wz*+ n for some w in I and some n in N} 

where N is the set 

(3.12) N = {z in Z: E(zj G) = O}. 

Combining (3.7) and (3.11) gives the representation 

(3.13) R ={r: r= r*+wz*+n for some w in I and some n in N}. 

Next, we consider solutions to the mean-variance problem conditioned on G. 

PROBLEM 3.1: Minimize (rl r)G for r in R subject to the constraint E(rl G) = w 
for some w in L 

Notice that the objective function for Problem 3.1 is not real-valued but is a 
random variable in L Hence, this objective only induces a partial ordering on P. 
Nevertheless, as we show in the subsequent analysis, Problem 3.1 does have a 
solution. Also, notice that (rj r)G in Problem 3.1 could be replaced by the variance 
of r conditioned on G without altering the solution. Any return that solves 
Problem 3.1 for some w in I is said to be on the mean-variance frontier conditioned 
on G. 

Problem 3.1 can be solved conveniently using the decomposition of returns 
given in (3.13). Let 

(3.14) w* = [w -E(r* I G)]/E(z* I G). 

Then r in R satisfies E(rj G) = w if, and only if, 

(3.15) r = r* + w*z* + n 

for w* given by (3.14) and some n in N. To solve Problem 3.1, n in (3.15) is set 
to zero since the components on the right-hand side of (3.15) are orthogonal 
conditioned on G. We have proved the following lemma. 

LEMMA 3.3: If (P, 7T) satisfies Assumptions 2.1-2.4 and [Z, E( I G)] satisfies 
Assumption 3.1, then rw = r* + w*z* is the solution to Problem 3.1 for w* given by 
(3.14). 
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The characterization of the mean-variance frontier given in Lemma 3.3 is the 
conditional counterpart to the characterization of the unconditional mean-vari- 
ance frontier given by Chamberlain and Rothschild (1983). (Other than condition- 
ing there is a minor difference between our approach and that taken by Chamber- 
lain and Rothschild (1983). Our decomposition is conditionally orthogonal while 
theirs is not; this is a matter of convenience.) A conditional two-fund theorem 
can be obtained as an immediate implication of the characterization given in 
Lemma 3.3 (Hansen and Richard (1984)). 

In Section 1 we described a set of circumstances in which unconditional 
moments of returns could be estimated using time series data. In these circum- 
stances, sample means and covariances calculated using time series data converge 
almost surely to unconditional means and covariances. The goal of this section 
is to study the impact of omitting the conditioning information when calculating 
the mean-variance frontier. To this end we confine our attention to the set of 
payoffs with finite unconditional second moments: 

(3.16) P*={p in P: E(p2)<xo}. 

On this set we define an unconditional inner product 

(3.17) (P1l P2) = E (p1 p2) for p, and P2 in P*. 

(Alternatively (3.17) can be viewed as a specialization of the conditional inner 
product (2.2) when G is the trivial sigma-algebra containing only C2 and the null 
set.) In addition, we consider the unconditional counterparts to the sets R, Z, 
and N. Let 

(3.18) R*=RnP*; 

(3-19) Z* = Z n P*; 

and 

(3.20) N* ={z in Z*: Ez = O}. 

We study the relation between solutions to Problem 3.1 and solutions to the 
following problem. 

PROBLEM 3.2: Minimize (rl r) for r in R* subject to the constraint that E(r) = c 
for some real number c. 

We are interested in circumstances in which this problem is not vacuous. For 
this reason, we make the following assumption. 

ASSUMPTION 3.2: There exists a return rO in R*. 

Given Assumption 3.2, ro and hence r* are always in R*. Taking the uncondi- 
tional expectation of (3.10) gives (z* I z*) - 1 so z* is in ZV. Also, the zero random 
variable is always in Z* and N*. Therefore, these three sets are not empty. 
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Any solution to Problem 3.2 for some real number c is said to be on the 
unconditional mean-variance frontier. Our strategy for calculating this frontier 
is very similar to the one used to calculate the mean-variance frontier conditioned 
on G. Applying the Law of Iterated Expectations to (3.8) gives 

(3.21) (zlz*)=E(z) for all z in Z*. 

Hence, the random variable z* is orthogonal to N* (unconditionally) so that 
elements in Z* can be represented as the sum of a scalar multiple of z* and an 
element in N*. Consequently, R* can be represented as 

(3.22) R* = {r: r = r* + c*z* + n* for some real number c* 
and some n* in N*}. 

Let 

(3.23) c* = [c - E(r*)]/E(z*). 

Then r in R* has expectation c if, and only if, 

(3.24) r = r*+c*z*+ n* 

for some n* in N* and c* given in (3.23). Problem 3.2 is then solved by setting 
n* to zero. We have proved the following lemma. 

LEMMA 3.4: Suppose that (P, ir) satisfies Assumptions 2.1-2.4 and 3.2, and 
[Z, E( I G)] satisfies Assumption 3.1. Then the solution to Problem 3.2 is rc= 

r* + c*z* for c* given by (3.23). 

Taken together, Lemmas 3.3 and 3.4 display the impact of omitting conditioning 
information when evaluating whether a return is on the mean-variance frontier. 
Notice that any return that is on the unconditional frontier must also be on the 
conditional frontier. In other words, rc given in Lemma 3.4 also solves Problem 
3.1 for w equal to E(rc I G). The converse is not true, however. A return may be 
on the mean-variance frontier conditioned on G and not be on the unconditional 
frontier. For instance, consider rw as given by Lemma 3.3. Then as long as w* 
as given by (3.14) is not equal to a constant with probability one, r" will not be 
on the unconditional mean-variance frontier. A risk-free return can be used to 
illustrate this fact. 

When P contains a unit payoff and Xr has no arbitrage opportunities on P, R 
will contain a return that is risk-free. This return is given by 

(3-25) rf = 1/( p* I OGC 

=(r*Ir*)G/(r* I)o1 

Notice that the conditional inner product of any payoff in P with a unit payoff 
is just the conditional expectation of that payoff. In this case, the variable z* 
used in representing the mean-variance frontier is the conditional residual of 
regressing 1 on r*. Hence 

(3.26) z* = 1-(r* I 1)Gr*/(r* I r*)G 
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It is straightforward to verify that z* satisfies (3.8). The risk-free return can be 
expressed as 

(3.27) rf = r* + rfz*. 

This means that the risk-free return will be on the unconditional mean-variance 
frontier if, and only if, rf equals a constant with probability one. 

The implications of the static CAPM are typically portrayed using a single-beta 
representation of the risk-return tradeoff. We call a return rp in R a reference 
return for a single-beta representation conditioned on G if Pr {Var (rp I G) = 0} = 0 
and 

(3.28) E(rj G) -a = CoV [r p G] [E(rIG)a] (3.28) ~~~Var [rp I G] IG)-a 

for all r in R, where the random variable a is in I. In general, any return in R 
that is conditionally uncorrelated with rp has a conditional mean equal to a. In 
particular, if a risk-free return rf is in I, then rf = a since Cov [rp, rf j G] = 0. 

Our next result establishes the conditions under which being on the conditional 
mean-variance frontier is equivalent to being a reference return for a conditional 
single-beta representation. It is the conditional counterpart of Roll's (1977) 
Corollary 6. 

LEMMA 3.5: Suppose (P, rT) satisfies Assumption 2.1-2.4, Xr has no arbitrage 
opportunities on P, and [Z, E( - I G)] satisfies Assumption 3.1. Then rp is a reference 
return for a single-beta representation conditioned on G if, and only if, rp = r* + W*z* 
where w* is in I and 

(3.29) Pr {w* = E(r* I G)/(1-E(z* I G))} = 0. 

The no-arbitrage restriction on Xr ensures that (1 - E(z* I G)) is not zero with 
probability one. Condition (3.29) guarantees that the probability that rp is equal 
to the minimum conditional variance return is zero. 

We call a return rp a reference return for an unconditional single-beta rep- 
resentation if Var (rpO) > 0 and the unconditional counterpart to (3.28) is satisfied 
for all returns in R*, where a is a real number. Notice that the unconditional 
version of (3.28) defines a set of restrictions across the means of returns and the 
population regression coefficients of returns on rp. There is also an unconditional 
version of Lemma 3.5. 

COROLLARY 3.1: Suppose the assumptions of Lemma 3.5 and Assumption 3.2 
are satisfied. Then rp is a reference return for an unconditional single-beta representa- 
tion if, and only if, rp = r* + c*z* where c* is a constant and 

(3.30) C* + E(r*)/(I - E(z*)). 
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The standard approach to testing whether a return is on the mean-variance 
frontier is to test whether a return satisfies a single-beta representation using 
regression techniques. Corollary 3.1 gives a defense for this procedure. Under 
the class of data generating processes given in Section 1, the unconditional first 
and second moments of return processes constructed using elements in R* will 
be time invariant and can be estimated using time series averages. In such 
circumstances, standard methods can be used to estimate unconditional means 
of returns and the slope coefficients for regressions of returns on a hypothetical 
reference return.7 Such methods are appropriate for testing whether returns are 
on the unconditional mean-variance frontier, but are not necessarily appropriate 
for testing whether returns are on the conditional mean-variance frontier. Omitting 
returns from the analysis, which is often required for the empirical analysis to 
be tractable, will not in general restore the validity of the regression methodology 
for testing whether returns are on the mean-variance frontier conditioned on G. 
Hence an econometrician is not permitted to ignore the conditioning information 
when testing whether returns are on the conditional mean-variance frontier. 

The analysis in this section has implications for the empirical evaluation of 
particular asset pricing models and for the performance evaluation. of portfolio 
managers. For example, the static Capital Asset Pricing Model of Sharpe (1964), 
Lintner (1965), and Mossin (1966) can be interpreted to imply that the return 
on the aggregate wealth portfolio is a reference return for a conditional single-beta 
representation, while Breeden's (1979) continuous time asset pricing model 
implies that the return on the aggregate consumption portfolio is. But neither of 
these portfolios will necessarily be a reference return for an unconditional 
single-beta representation, (e.g., see Cornell (1981)). Along the second vein, our 
results are consistent with the finding of Dybvig and Ross (1985) that when 
returns from a managed-portfolio are found to be unconditionally mean-variance 
inefficient, they still may be conditionally mean-variance efficient. The analysis 
in this section gives a characterization of all returns that stay on the mean-variance 
frontier when conditioning information is omitted. 

4. AN ALTERNATIVE PRICING FUNCTION 

In Section 3 we showed that the mean-variance implications of asset pricing 
models are sensitive to the omission of conditioning information. In this section 
we suggest a method for deducing implications that are expressable in terms of 
unconditional moments. Recall that unconditional moments can be estimated 
consistently using time series data when the time series are generated by processes 
like those described in Section 1. 

In this section we restrict our attention to payoffs with finite unconditional 
second moments, i.e., payoffs in P*. Conditioning information was essential to 

'The standard methods for inference are often inappropriate, however, because they assume the 
time series process for returns are independent and identically distributed. These methods can be 
modified using the asymptotic distribution theory in Hansen (1982). 
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the analysis in Section 3 because the pricing function Xr mapped into I. Con- 
sequently, some payoffs in P* have prices that are not constant with probability 
one. Our approach in this section is to define a new pricing function r* that is 
constructed from Xr but assigns prices that are real numbers. For this construction 
to be valid, we require that the payoff p*, used in representing gr, be in P*. 

ASSUMPTION 4.1: (p* I p*) < Z. 

Assumption 4.1 will not be satisfied for all choices of numeraire for quoting 
asset prices. More precisely, let w be a random variable in I for which Pr {w > 0} = 
1. Then a pricing function r- with a different numeraire is given by r-(p) = 

ir(p)/w. This pricing function has a benchmark payoff p*/w. If p* satisfies 
Assumption 4.1, then it is not necessarily the case that p*/ w will satisfy Assump- 
tion 4.1. On the other hand, if p* does not satisfy Assumption 4.1 then one can 
always find a random variable w such that p*/w will satisfy Assumption 4.1. For 
instance, let w = IIp*IIC. Then E[(p*/w)21 G] = 1 implying that p*/w has a finite 
unconditional second moment. Therefore, requiring a pricing function to satisfy 
this assumption restricts the choice of numeraire. 

We define rT* to be 

(4.1) r*(p) = E[,T (p)] 

Notice that r* maps into the real numbers. This function behaves like the pricing 
function Xr when the trivial sigma algebra is used for the conditioning information 
set. The only random variables that are measurable with respect to the trivial 
sigma algebra are constant over all sample points. We refer to prices calculated 
using ri* as pseudo-prices. 

THEOREM 4.1: Suppose (P, IT) satisfies Assumptions 2.1-2.4 and 4.1. Then 
(P*, rT*) satisfies Assumptions 2.1-2.4 for G given by the trivial sigma algebra. 
Furthermore, if Xr has no arbitrage opportunities on P, then Tr* has no arbitrage 
opportunities on P*. 

Elements in Z* and R* will be assigned the same prices by Xr and Tr*, but 
many other payoffs in P* will be assigned distinct prices by these functions. 
Notice that some payoffs in P* that are not in R* will satisfy ri*(p) = 1. For 
example, suppose there is a unit payoff in P such that the riskfree return, 
rf = 1/E(p* I I), is in R*, but is not a constant. We can use the pseudo-pricing 
function Tr* to construct a pseudo-riskfree return rf*=1/E(p*), which is a 
constant, but is not in R* and is not equal to rf. Similarly, some payoffs in P* 
that are not in Z* will satisfy rr*(z) = 0. Consequently, the set of pseudo-returns 
can be larger than R* and the set of payoffs with pseudo-prices that are zero 
can be larger than ZV. 

In addition to assigning prices that are real numbers, the pseudo-pricing 
function ir* has other nice properties. For instance, this function is constructed 
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so that the inner product representation 

(4.2) 7r*(p) = E[(p I P*)c] 

(pIP*) 

is valid. Hence, p* can be used to represent 7r* as well as ir. This feature is 
attractive for the following reason. Suppose time series data are available on p* 
as implied by a particular asset pricing model. In addition, suppose time series 
data are available on asset payoffs and prices. Under the data generation processes 
described in Section 1, both E[ir(p)] and E(pp*) can be estimated for any p in 
P*. Relations (4.1) and (4.2) imply that these two quantities should be the same. 
Consequently, the asset pricing model can be tested by checking whether sample 
counterparts to E[IT(p)] and E(pp*) could be equal after accounting for estima- 
tion error. This procedure can be viewed as an interpretation of the econometric 
approach suggested by Hansen and Singleton (1982) for testing intertemporal 
asset pricing models. 

Notice that payoffs can be constructed that are conditional linear combinations 
of some initial collection of payoffs as long as the coefficients are measurable 
with respect to G. The prices (using 7r as the pricing function) of the resulting 
payoffs are just the conditional linear combinations of the corresponding prices 
(again using T) of the initial collection of payoffs. Hence, an analyst is given 
great flexibility in constructing payoffs and prices to be used in this procedure. 
The conditional weights used in forming payoffs and prices correspond to the 
instrumental variables in the Hansen-Singleton analysis. Hansen and Singleton 
show formally how to estimate preference parameters and test restrictions using 
time series versions of instrumental variables methods. 

A question emerges as to whether information is lost in testing the implications 
using lr* instead of Ir. One way to think about this problem is to ask when can 
two pricing functions, say Xr and rr, defined on P imply the same pseudo pricing 
function on P*. Suppose these two pricing functions have the representations 

(4.3) r(p) = (p I p*)G for all p in P 

and 

(4.4) l(p) = (pI p')G for all p in P, 

where both p* and p+ are in P. In addition, suppose p* and p+ are in P* and 
Xr and v+ imply the same pseudo pricing function: 

(4.5) IT*(p)= E[7T(p)] 

= E[i(P) 

for all p in P*. Then 

(4.6) (p* p+l p*-p+)=o 

since p* -p is in P*. Hence, p* is equal to p+ with probability one implying 
that iT and 7r' are the same pricing function. This analysis shows that the 
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conditioning down approach used in constructing 7r* can discriminate among 
distinct pricing functions defined on P. 

Testing whether 

(4.7) (pj p*) = E[7T(p)] for all p in P* 

may be an arduous task. Recall that P is a conditional linear space that will be 
infinite dimensional in many, if not most circumstances. Even if P is generated 
by taking all conditional linear combinations of a finite dimensional collection 
of primitive payoffs, P* may not be a finite dimensional unconditional linear 
space because of the presence of conditioning information in I. If relation (4.7) 
is tested for only a subset of assets, then restrictions are lost. For instance, let 
P- be an unconditionally complete linear subspace of P*. Then it is possible to 
construct distinct pricing functions on P* that agree on P-. This claim follows 
from the analysis in Harrison and Kreps (1979) and Kreps (1981). They show 
that when an extension of a pricing function exists that preserves no-arbitrage, 
this extension is not necessarily unique. Consequently, distinct pricing functions 
on P may imply the same pseudo pricing function when restricted to P-. 

In summary, models of asset prices are indexed by their pricing function defined 
on P. We have shown that conditioning down per se does not prevent one from 
distinguishing between models of asset prices. (Of course, two alternative models 
of asset prices that imply the same pricing functions are indistinguishable in our 
analysis.) On the other hand, the omission of payoffs can result in statistical tests 
that are not powerful against particular families of alternative models. Nonethe- 
less, even with a subset of assets, some discrimination is possible. 

5. DISCUSSION AND CONCLUSION 

Dynamic models that posit environments with uncertainty and, in particular, 
dynamic models of asset pricing require specifications of the changing information 
available to economic agents when making their consumption and investment 
decisions. Hence, it is convenient, if not necessary, to view both payoffs and 
prices as random variables which inherit their randomness from the underlying 
state of the economy. For this reason, we introduce conditioning information 
explicitly and establish conditions under which equilibrium pricing functions can 
be viewed as conditional linear functionals with conditional inner product rep- 
resentations. These conditional inner product representations are useful in a 
variety of applications, two of which are illustrated in Sections 3 and 4 of this 
paper. Both illustrations analyze approaches to testing asset pricing models using 
unconditional moments of payoffs and prices. 

One approach to deducing testable restrictions of asset pricing models that 
was not analyzed in this paper is Ross' (1976) Arbitrage Pricing Theory (APT). 
Comments similar to those made in Section 3 also apply to the APT. Ross assumes 
that a specified set of primitive asset returns have a factor structure. He shows 
that if the number of primitive assets becomes arbitrarily large, then to avoid 
arbitrage there must be a linear relationship between the expected asset returns 
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and their factor loadings. As Shanken (1983) points out, the factor structure is 
not robust to the formation of portfolios. Consequently, the analysis is sensitive 
to the specification of the primitive securities. Chamberlain and Rothschild (1983) 
circumvent Shanken's objection by making a weaker assumption that only a fixed 
number of eigenvalues of the covariance matrix of returns are unbounded as the 
number of assets increases. They derive conclusions analogous to those obtained 
by Ross without specifying a factor structure on the set of primitive returns. 

One way to obtain a dynamic version of the APT is to assume that the restrictions 
on the covariance matrices of returns apply to the conditional covariance matrices. 
A factor structure or a restriction on the number of unbounded eigenvalues is 
not, however, robust to conditioning information.8 Consequently, unconditional 
covariance matrices could not be used directly in such an approach. An alternative 
approach, suggested by Stambaugh (1983) and Rothschild (1985), is to assume 
that the restrictions apply directly to the unconditional covariance matrices of 
returns. The restriction of a fixed number of unbounded eigenvalues will not, 
however, be robust to portfolio formation because portfolios can be constructed 
using weights that are in the conditioning information set of economic agents. 
Furthermore, it is more difficult to relate the factors to the underlying state 
variables in the economy using an unconditional representation instead of a 
conditional representation. 
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APPENDIX 

In this Appendix we establish conditional versions of several of the important Hilbert-space 
theorems. We also prove all of the lemmas and theorems discussed in the text. 

We first prove a conditional version of the Riesz-Fischer Theorem which shows that L2 is complete. 

THEOREM A.1: If P+={p in I,: E(p21 G)< o}, then P+ is conditionally complete. 

To prove Theorem A.1 we need a lemma which shows that if {p : j -1, 2, .. .} is conditionally 
Cauchy in P+, then this sequence is Cauchy in probability. Let ? > 0 and define the sets 

AJk(e) = {IP, Pkl > E}, 

and 

Bjk() (){ IIP,-Pk IIG > ?} 

8 In an earlier version of this paper (Hansen and Richard (1984)) we have an example with an 
infinite number of consumers where the endowments satisfy a conditional factor structure. In this 
example a dynamic, conditional version of the APT can be found. There is, however, no unconditional 
factor structure so that no unconditional dynamic version of the APT exists. 
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LEMMA A.1: If { pj: j = 1, 2, . . .} is a conditional Cauchy sequence, then for any a > 0 there exists 
an M(e) such that forj, k?aM(e), Pr{A1k(e)}<e. 

PROOF: Let Bck(s) denote the complement of Bjk(e), and let 8 =min {e/2, (53/2)1/2}. Since 
{ pi: j = 1, 2,.. .} is conditionally Cauchy, there exists an M(e) such that forj, k - M(e), Pr {Bjk(8)} < 
8. But on B' (8), E[(pj -pk)21 G] S 82 so that by the definition of conditional expectation, 

{ E[(pj -pk)2 1 G] d Pr= { (Pj -Pk)2 d Pr. 
B,(8) j&-(S) 

Partition Bck(8) into the two sets C, = Bjck(8) r Ack(s) and C2 = Bck(8) n Ajk(e). Hence for 
j, k > M(e) 

82 | (pj-Pk)2 d Pr={ (Pi-Pk)2 d Pr+{ (P-Pk)2 d Pr 

Pj C -Pk ) d Pr 3 _ Pr { C2}, 

since the integral over C1 is nonnegative and on C2, (p3 -pk)2> 2. Now forj, ka M(e) 

Pr {A3k(e)} = Pr {Bck(8) n Ak()} + Pr {Bjk(8) n Ajk(?)} 

S Pr {C2} + Pr {Bjk(8)} 

<82/2+ <S. Q.E.D. 

PROOF OF THEOREM A. 1: Suppose { pj: j = 1, 2,.. .} is a conditional Cauchy sequence in P+. 
First, we show that there is a subsequence {Pj(k): k = 1, 2,.. .} which converges conditionally to po 
in P+. Then, we show that the original sequence converges conditionally to po. 

From Lemma A.1 and the fact that {pj: j = 1, 2, .. .} is conditionally Cauchy, we know that we can 
construct a subsequence {Pj(k): k = 1, 2,.. .} which satisfies 

ak = Pr {I Pj(k+l) -PI(k)l > 2 k} < 2 

and 

bk = Prf{lP,(k+1)-Pj(k)11G >2 } < 2 
fork=1,2,....LetSk=Pj(k+l)-Pj(k).Sincey_Z=1 ak <co and Zt1 bk < co, the Borel-Cantelli Lemma 
guarantees that the following infinite series converge almost surely: 

00 

(A.-1) Y_ 1Ski < 0 
k=1 

and 
00 

(A.2) Y_ 11 Sk 11 G, < cx). 
k=l 

We now construct po and show it is in P+. Define po by 
00 

Po Y Sk +Pj(l). 
k=1 

Relation (A.1) guarantees that po is well-defined as an almost sure limit so that po is in I,. By the 
conditional version of the Minkowski Inequality and (A.2) 

IIPOIIG S< E IISk1lG +11IPJ(1)11G<C), 
k=1 

so po is in P'. 
To show that {p,} converges to po conditioned on G, note that 

liM 11Pj(k) Po 11G lim S 
k --~ oo k- oo i=k G 

00 

< lim Y_ ISi 11 G = 0 almost surely, k- i, oik 
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by the conditional version of the Minkowski Inequality and (A.2). Since convergence almost surely 
implies convergence in probability, {Pj(k): k = 1, 2, . .} converges conditionally to po. 

Finally, we show that the original sequence {Pk: k = 1, 2,.. .} converges conditionally to po. By 
the conditional version of the Minkowski Inequality, 

IIPk POII G SIIPk, Pj(k)IIG + I1 Pj(k) POlI G- 
Since {Pk: k = 1, 2,.. .} is conditionally Cauchy and j(k) 2 k, for any e > 0 

lim Pr {jPk-P; P(k) 11 G > ?/2} = 0. 

We have already shown that 

lim Pr{IIPj(k)- POIIG> e/2} 0. 

Therefore, 

lim Pr { |Pk PO11 lG > }= 0- Q. E. D. 

PROOF OF LEMMA 2.1: The proof is by contradiction. Suppose {p,: j = 1, 2,.. .} converges condi- 
tionally to zero and that there exists an e > 0 such that 

lim sup Pr { Ir(pj)l > ?}> 0. 

Let qj=p* +p- where p, =max{O,p,} and p, =max{O,-pj}. Then by linearity and positivity, 
ir(qj) = 7(p,. ) + 7(p,):l 2 Ir(p,)I. Hence 

(A.3) lim sup Pr {ir(qj) > E} > 0. 
j ro 

Furthermore, 1I 1 = 11qj 11 G so that {qj: j = 1, 2,.. .} converges conditionally to zero. 
Next we show that {r(q,): j = 1, 2, .. .j converges in probability to zero which contradicts (A.3). 

Theorem 4.1.5 in Chung (1974) gives a metric on the space of random variables that induces a notion 
of convergence that is equivalent to convergence in probability. Hence, we can establish convergence 
in probability to zero by showing that every subsequence contains a further subsequence that converges 
in probability to zero. Let {q*c: j = 1, 2,.. .} be any subsequence of {*q: j = 1, 2,.. .}. Then there exists 
a subsequence {q*(k: k = 1,2,.. .} of {q*: j = 1, 2, .. .} such that 

ak = Pr {q*klG > 2k} <2 

bk =Pr{11q*(k)llG> 2 }<2 , 

since {q*: j = 1, 2,. . .} converges conditionally to be zero. Using logic that parallels closely the proof 
of Theorem A.1, the infinite sum 

00 

E qflk) =qO 
k=l 

converges almost surely and conditionally to q*, which is in P+. Since q*(k) is nonnegative, i[q*%k] 
is nonnegative for all k > 0. Hence, for any O>0 

l 

E 7[q* k)]% ---r(qO )- 
k=1 

Therefore, the infinite sum 
00 

E wrq*(k)] 
k=1 

converges almost surely implying that {7[q*k)]: k = 1, 2, ... } converges almost surely to zero. Since 
convergence almost surely implies convergence in probability, {7r[q*(k)]: k = 1, 2,. . .} converges in 
probability to zero. Q.E.D. 

PROOF OF LEMMA 2.2: Suppose p in P satisfies Pr {p 2 0} =1. Let p,, =p+2- for n = 1, 2, 3,... 
so that r(p,,) = ir(p) + 2-"r(1) >0 with probability one since 7r is strictly positive. Letting n - oo 
shows that iT(p) 2 0 with probability one. Hence iT is positive and Lemma 2.1 implies Assumption 
2.3 is satisfied. To establish Assumption 2.4, consider the unit payoff on Q2, so strict positivity implies 
Pr({i(1)>0})= 1. Q.E.D. 
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Our next theorem establishes the conditional version of the Classical Projection Theorem for 
Hilbert spaces. First we prove three preliminary lemmas. 

LEMMA A.2: Let H be a conditional linear subspace of P', and let p be an arbitrary element in P+. 
If there is an ho in H such that 

(A.4) II P- holl c, II-<1p-h IIGc 
for all h in H, then ho is unique. A necessary and sufficient condition that ho in H be the unique element 
of H satisfying (A.4) is that the error element p - ho be conditionally orthogonal to H. 

PROOF: We show first that if ho satisfies (A.4), p - ho is conditionally orthogonal to H. Let h be 
any element in H and let 

I0 if llhllG=0, 
( p - ho I h)G/ 11 h 112 otherwise. 

Notice that w is in I so that 

11lP - ho - wh 112G = 1lp -ho 12G +W 2l h 112G - 2w( p - ho I h)G 

= IIp-hoI2I_-W2Ilhll . 
Since ho satisfies (A.4) and ho+ wh is in H, w must be zero with probability one. But w is zero only 
when (p - hoI h)G is zero. Since our choice of h in H is arbitrary, p - ho is conditionally orthogonal 
to H. 

We now show that if p - ho is conditionally orthogonal to H, then ho is the unique minimizing 
element. For any h in H, 

lip-hII12= lip- ho+ ho- hII2 = lIp-ho12 + Iho-hII1. 

Hence if ho $ h on a set of positive probability, then IIP - h 1G > IIP - ho11 G on that set. Q.E.D. 

Our next two lemmas use the space L 2={p in P+: li Ip < c} where lip I = (Ep2)'/2. Mean-square 
convergence on this space is defined using the unconditional norm 11 It is a well-known result that 
L2 is complete. 

LEMMA A.3: Suppose { p,: j = 1, 2,.. } converges in mean-square to po in L2. Then this sequence 
also converges conditionally to po. 

PROOF: Note that 

lmE[1P,_ PO 112G lim 11 Pi _ PO112 = O. lim~ E[Ilp~ - 0I~ in i pI2 

Therefore, { II pj -poll 2: j = 1, 2, . . .} converges in probability to zero implying that { p: j = 1, 2,. . 
converges conditionally to zero. Q.E.D. 

LEMMA A.4: Suppose H is a conditionally complete linear subspace of P+. Then H* = {h in H: || h || < 
co} is a (mean-square) closed linear subspace of L2. 

PROOF: The set H* is a subspace of L2 because H is a conditional linear subspace of P+ and 
unconditional linear combinations of random variables with finite second moments themselves have 
finite second moments. To prove that H* is closed, let {hi: j = 1, 2, . . .} be any mean-square Cauchy 
sequence of H*. Since L2 is complete, this sequence converges in mean-square to an element ho in 
L2. Lemma A.3 and the conditional closure of H guarantee that ho is in H*. Q.E.D. 

We now prove a conditional analogue to the Classical Projection Theorem. 

THEOREM A.2: (Conditional Projection Theorem): Suppose H is a conditionally complete linear 
subspace of P+. Corresponding to any element p in P+, there is a unique element ho in H such that 

p - hoIG p - h II G for all h in H. Furthermore, a necessary and sufficient condition that ho in H be 
the unique minimizing element is that p - ho be conditionally orthogonal to H. 
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PROOF: The uniqueness and orthogonality have been established in Lemma A.2. We now establish 
the existence of a minimizing element. This is accomplished by examining a subset of P+ for which 
unconditional second moments are finite. We apply the Classical Projection Theorem directly to this 
subset and then we extend this solution to all of P+. 

Let 

H*={h in H: llhll <oo}. 

Then Lemma A.4 implies that H* is a closed (in mean-square) linear subspace of L2. We calculate 
the conditional projection of p in P+ onto H in terms of an unconditional projection onto H*. There 
are two cases. In the first case, IpIPI < o. By the Classical Projection Theorem there exists an ho in 
H* which satisfies 

E(Il1p-hol 12 ) E( 11 p -h 112 ) for all h in H*. 

We next prove by contradiction that 

IIp - hoIIG ? IIp - h IIG for all h in H, 

which establishes the theorem for this case. Suppose there exists an h in H such that 

(A.5) IIp-hIIG < IIp-hoIIG 
on a set A in G, where Pr (A)> 0. Let 

h {honA, 
ho on AC. 

Since A is in G, h is a conditional linear combination of h and ho where the coefficients are the 
indicator function of A and A', respectively. Hence h is in H. Inequality (A.5) implies that 

(A.6) E( lphl c)<E(JJp-h0 l)<o 

Therefore, h is in H* and satisfies (A.6), contradicting the assumption that ho is minimizing in H*. 
In the second case, Ep2 = X so we must transform p in order to use the result of case one. Let 

p = p/ v, where v in I is defined by 

J IIPIIG when 11p 0> 0, 
Vt otherwise. 

Now If 11G S 1, implying f is in L2 since Ef I ) S 1. From case one we know there exists an ho 
in H* such that 

lIp-hoI&IG lp-hllG for all h in H. 

Let ho = vh& so that 

II p-bOll = V I PhO|I G S V || v lf V |- / = II P h pbG, 
for all h in H, since h/v is in H. Q.E.D. 

Next we prove a conditional version of the Riesz-Frechet Representation Theorem. We begin with 
a preliminary lemma. 

LEMMA A.5: Suppose (P, 7r) satisfies Assumptions 2.1-2.3. Then Z={p in P: 7r(p)=O} is a 
conditionally complete linear subspace or P. 

PROOF: It is an immediate consequence of the conditional linearity of ir that Z is a conditional 
linear subspace of P. To prove that Z is conditionally complete let {z,: j = 1, 2,.. .} be a conditional 
Cauchy sequence in Z. Since P is conditionally complete this sequence converges conditionally to 
an element Po in P. Furthermore, {zj -po: j = 1, 2,.. .} converges conditionally to zero implying that 
fIr(z, -pu): j = 1, 2,.. .} converges in probability to zero. However, 

r(Z1-Po) = '(Zz)-r(Po) = -(Po)- 

Consequently, ir(po) is zero and po is in Z. Therefore, Z is conditionally complete. Q.E.D. 
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PROOF OF THEOREM 2.1: Let po satisfy Assumption 2.4 and let z0 be its conditional projection 
onto Z. Then 7T(po) = 7T(po - z0) since 7T(z0) is zero. Define the benchmark return r* by 

(A.7) r* = (po-z0)/ 7T(po). 

Notice that r* is conditionally orthogonal to Z. Given any p in P, p-7T(p)r* is in Z since 
7T[p-7T(p)r*] = 7(p)- T(p)7r(r*)= 0. Hence, (p- T(p)r* I r*)G = 0 or 

(A.8) (p'I r*)G = 7(p)IIr*IIG. 

We digress to show by contradiction that Pr { II r* G = 0} = 0. Suppose 11 r* G = 0 on a set A where 
Pr (A) > 0. Hence on A, r* = 0. Define a zero payoff 

fr* on A, 

0 otherwise. 

By Assumption 2.2 17(z) = 0, but by (A.7) 7r(z) = 1 on A, establishing the contradiction. 
Returning to the main proof, divide (A.8) by I |r*|12 and define 

p* = r*/II r*I||2I 

to get 

17(p) = (p I p*)G- 

The element p* is clearly unique since if p' is any element of P for which 1r(p) = (p I P')G for all 
p, we have (p* I p*)G = (p1I P*)G = (p1I P')G so that IIp* -P'IIG = 0. Since IIP*IIG = 1/ IIr IIG, it follows 
that Pr { IIp*IIG > 0} = 1. Q.E.D. 

PROOF OF LEMMA 2.3: First we show that Pr {p* > 0} = 1 implies no arbitrage. Let p in P' be 
such that Pr { p ? 0} = 1. Since 7r(p) = E (pp* I I), Pr {1 T(p) ? 0} = 1. If Pr {1 (p) = 0} = 0, then the result 
follows. Otherwise Pr {1T(p) = 0} > 0, so that 

0=i r(p) d Pr= pj*pdPr. 
{7( p)=O} {X(p)=O} 

Since Pr {p* > 0} = 1, we must have Pr ({p = 0} n {Xr(p) = 0}) = Pr ({vT(p) = 0}), implying Pr ({vT(p) = 

0} r) { p > 0}) = 0. The result follows from the fact that Pr ({l r(p) S 0} rn){ p > 0}) = 
Pr ({v(p) =0}nr{p>0}) =0. 

Next we show that no arbitrage on P' implies Pr fp*> 0} = 1. Suppose to the contrary that 
Pr (A) > 0 where A = {p* S 0}. The indicator function, 1A 2 0, is in P'. We know that 17-(1A) S 0 since 
1T(1A) = (p*I 1A)G. Therefore, Pr ({T(1A) - } r}) {1A > 0}) = Pr {1A > 0} = Pr (A) > 0, establishing the 
required contradiction. Q.E.D. 

PROOF OF LEMMA 3.1: This proof follows directly from Theorem 2.1 and its proof. In the proof 
of Theorem 2.1, r* =p*/1(p*) was constructed to be conditionally orthogonal to Z. It remains to 
show that r* satisfies (ii). For any r in R, r - r* is in Z so that 

(r* I r)G = (r* I r*)G = IIr*IG. 

Consequently, 

0 IIr-r*I12I = llr12 - 2(r* I r)G + ||r* 12 

= llr112 -IIr*I11, 

establishing that (ii) is satisfied. Q.E.D. 

PROOF OF LEMMA 3.2: We have already shown Z is a conditionally complete subspace of P; 
hence Assumption 2.1 is satisfied. Assumption 2.2 follows directly from the conditional linearity of 
the conditional expectation operator. Finally Assumption 2.3 follows from the conditional version 
of the Cauchy-Schwarz Inequality since IE(zIG) I ku6z||. Q.E.D. 
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PROOF OF LEMMA 3.5: The proof of the "if" part proceeds in three steps. The first step 
is to show that Prf{l E(z*IG)=O}=Pr{Var(z*IG)=O}=O. Note that Var(z*IG)= 
E(z*21 G) - E(z* I G)2 =E(z*IG)(1-E(z*IG)) is zero if, and only if, 1-E(z*IG) is zero since 
E(z*IG) is positive with probability one by Theorem 2.1. We can establish a contradiction by 
supposing that Pr {Var (z* I G) = O} > 0. Define 

AfO if Var(z*IG)>0, 
1z* if Var(z*IG)=0, 

so that z is in Z. Note that Var(z2IG)=O implying z is in I so that E(z9IG)=Z. Also when 
Var (z* I G) = 0, E(z* I G) = 1 implying 

A fO if Var (z* IG) > , 
z = 

I if Var (z* IG) = 0. 

Since Z(9) =0 this contradicts no-arbitrage. 
Suppose rp =r* + w*z* where w* is in I, Pr fw* = v} = 0, and v = E(r* I G)/[1 - E(z* I G)]. The 

second step is to prove that Pr {var (rp, I G) = 0} = 0. Let rv = r* + vz*. By direct computation we find 
that 

Var (r, I G)-Var (rv I G) =Var (z*I G)(w* -v)2, 

which is positive with probability one by step one. 
The final step is to show that r,p is a reference return for a single-beta representation conditioned 

on G. Define 

[E(r*2 1 G)-E(r* I G)w*]E(z* I G) 
(A.9) LZ - 

(v-w*) Var(z*IG) 

By step one, the denominator of (A.9) is nonzero with probability one. Let r be any return in R. 
Then r = r* + wz* + n for some w in I and some n in N. Using the conditional orthogonality of r*, 
z*, and n, we find that 

E(rpo I G) = E(r* I G) + w*E(z* I G); 

E(r l G) = E(r* l G) + wE(z* I G); 

Var (rp I G) = Var (r* I G) + w*2 Var (z* I G) -2w*E(r* I G)E(z* I G); 

and 

Cov (r,, rIG) = Var (r* IG)+ ww* Var (z* IG) -(w+ w*)E(r* IG)E(z* IG). 

It is straightforward but tedious to verify by direct substitution that (3.28) holds. 
The proof of the "only if" part of Lemma 3.5 also requires three steps. First we show that 

Pr{E(r,,IG)=a}=O. Note that ro=r,p+z*/E(z*IG) is a return in R and that E(roIG)= 
E(r,, I G) + 1. This in turn implies that 

Cov (r, ro I G) 
1 + E(rp, I G)-a = E(ro I G)-a= ( [E(r. I G)-a] 

Var (r. IG) 
Therefore, 

(A.1 0) 1=[ 
Co 

(r( 
I G) 

I1[E(r,,|G)-a], 
(AlO) 1= ~Var (r,,IG) JLr aJ 

implying that Pr {E(r,, I G) = a} = 0. 
The second step is to show that r,, = r* + w*z*, for some w* in I. Since r,, is a return, it can be 

represented as r, = r* + w*z* + n, for some w* in I and some n in N. Let r", = r* + w*z*. Since 
E(r,, I G) = E(r,, I G) and r,,. is in R, part one and (3.28) imply that E(r, 2 G) = E(r1,,r, I G). Since r*, 
z*, and n are conditionally orthogonal, E(n2 I G) = 0 implying that Pr f n = 0} = 1. 

The final step is to prove that w* satisfies (3.29). Let A = {w* = v} and suppose to the contrary 
that Pr (A) > 0. It is easily calculated that on A, Cov (ro, r.8 I G)/Var (r, I G) = 1: 

Cov(ro, r8I G)=Var(rpIG)+Cov(z*, r, IG)/E(z*IG) 

=Var (r, I G)+vE(z*21 G)/E(z* I G)-[E(r*I G) + vE(z* I G)] 

=Var (r, IG) > 0. 

Hence, Cov (ro, r.8 I G)/Var (r,, I G) = 1 on A. This contradicts (A.10). Q.E.D. 
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PROOF OF COROLLARY 3.1: Let P- =-{ p in P*: 7r(p) = c for some real number c}, where P* is 
defined in (3.16). Clearly R*, Z*, and N* are subsets of P- and r* is in P-. We will prove that 
(P-, 17) satisfies the requirements of Lemma 3.5 for G equal to the trivial sigma algebra. If {pj: j = 

1, 2, . . .} is a mean-square Cauchy sequence in P-, then it converges in mean-square to an element 
po in P*. Lemma A.3 shows that { pj: j = 1, 2,. . .} converges conditionally to po. Hence, { 7r(pj): j = 

1, 2, .. .} converges in probability to 7r(po). Since 7T(pj) = c, for some real number c,, 7r(po) = co for 
some real number co. Consequently, po is in P- proving that P- is closed in mean-square. Also, an 
(unconditional) linear combination of payoffs with constant prices has a constant price. Therefore, 
P- satisfies Assumption 2.1. The pair (P-, 1r) satisfies Assumption 2.2 trivially. Suppose {pj: j = 

1, 2,. . .} in P- converges in mean-square to zero. Lemma A.3 implies that this sequence converges 
conditionally to zero. Since (P, 1r) satisfies Assumption 2.3, {7T(pj ): j = 1, 2, .. .} converges in probabil- 
ity to zero. However, rr(pj) = Cj for some real number cj. Therefore, {cj:j=1, 2,.. .} converges to 
zero and (P-, 1r) satisfies Assumption 2.3. Since r* is in P-, (P-, 1r) satisfies Assumption 2.4. If vr 

has no arbitrage opportunities on P, then v7 has no arbitrage opportunities on a subset of P. Finally, 
z* is in P- and E(z*)>0. Hence, [z*, E(*)] satisfies Assumption 3.1 unconditionally. Q.E.D. 

PROOF OF THEOREM 4.1: We show in turn that (P*, 7T*) satisfies Assumptions 2.1 through 2.4 
when G is replaced by the trivial sigma algebra. Lemma A.4 shows that P* satisfies Assumption 2.1. 
It follows from the linearity of the expectations operator that (P*, 7r*) satisfies Assumption 2.2. The 
Cauchy-Schwarz Inequality implies that I7*(p)l 1 IIp* 11 11p11. By applying this inequality, it can be 
verified that (P*, 17*) satisfies Assumption 2.3. Theorem 2.1 guarantees that 7T*(p*) = E[(p* I p*)G] > 
O so that (P*, 7r*) satisfies Assumption 2.4. 

Finally, suppose v7 has no arbitrage opportunities on P. Let p > 0 and let A = {p > 0} have positive 
probability. Then 7r*(p) = E[ rr(p)] = fA rr(p) d Pr> 0. Q.E.D. 
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